Energy Storage Integration – Scheduling Logic

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

RPOSES ONLY

Daniel F. Noriega Associate Market Design Specialist

MIWG

July 19, 2017. Krey Corporate Center, Rensselaer, NY.

Overview

Background

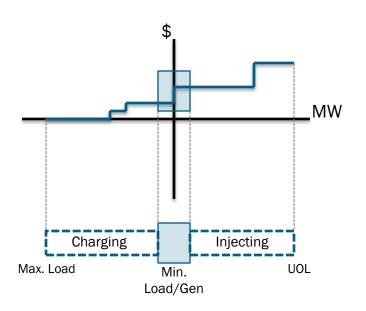
- Energy Storage Integration and Optimization, 2016 Market Design
- Modeling enhancements
 - Feedback Received
- Phase 1 Scheduling Logic
- Scheduling Examples
- Next Steps

Background

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Two-Track Market Design

Track 1: Energy Storage Integration


- Develop the participation model for Energy Storage Resources ("ESRs").
- Track 2: Energy Storage Optimization
 - Develop the optimization methodology for storage resources.
 - During this phase, the NYISO intends to make an enhanced Energy level (*i.e.*, State of Charge ("SoC")) management available to storage resources.

Energy Storage Resource Day-Ahead and Real-Time Offers

Single Incremental Hourly Offer

- Will allow energy storage resources to include intra-hour withdrawal or injection price points in its offer
- Permitting intra-hour switching between withdrawals and injections provides RTC/RTD with flexibility to fully utilize the energy storage resources' capabilities
- Additional offer parameters (see slides 6-10) will be available to reflect energy storage resource capabilities (*e.g.*, transition time and minimum load/injection)

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Proposed Offer Parameters

Registration		Registration / Bio	Registration / Biddable		
Transition Time	[minutes]	Min. Load	[MW]	Incremental Bid Curve	[\$/MW]
Upper Charge Limit	[MWh]	Min. Generation	[MW]	Beginning State of Charge	[MWh]
Lower Charge Limit	[MWh]	Min. Load Cost	[\$]	Ending State of Charge	[MWh]
Charge Rate (Max. Load)	[MW]	Min. Generation Cost	[\$]		
Discharge Rate (UOL)	[MW]	Start-up Cost	[\$]	Bid Modes	[-]
Energy level (SoC)	[Yes/No]	Start-up Load Cost	[\$]		
Min. Charge Time	[minutes]				
Max. Charge Time	[minutes]				
Min. Run Time	[minutes]				
Max. Run Time	[minutes]			(*) Parameters not inc	cluded in
Min. Downtime	[minutes]			5/5/17 MIWG presen	tation.
Withdrawing conversion losses	[%]				
Injecting conversion losses	[%]			Key	
Through-Put *	[MWh]			Existing Parameter	
Response Rate(s)	[MW/min]				ramatar
Start-up Notification Time	[minutes]			Additional Storage Par	NEW YORK
Maximum Stops per Day	[n]				INDEPENDE SYSTEM OP

DRAFT – FOR DISCUSSION PURPOSES ONLY

New Parameters Definitions

- Transition Time: Minimum time that a resource requires to switch between injection/withdrawal states
- Minimum Load: Minimum withdrawal level at which the resource can operate
- Upper Charge Limit: Maximum quantity of energy that the resource can store
- Lower Charge Limit: Minimum quantity of energy that the resource must maintain

New Parameters Definitions (con't.)

- Maximum energy charge rate (Max. Load): How quickly the resource can withdraw electricity from the grid
- Energy level (SoC): [yes/no] If the resource will allow the NYISO to see its Energy Level (SoC)
- Minimum charge time: Minimum time that the resource can receive electricity from the grid
- Maximum charge time: Maximum time that the resource can receive electricity from the grid
- Minimum load: Minimum MW value that the resources may withdraw from the grid

New Parameters Definitions (con't.)

- Maximum run time: Maximum time that the resource can inject electricity onto the grid
- Withdrawing conversion losses: Conversion losses of the resource when charging
- Injecting conversion losses: Conversion losses of the resource when discharging
- Start-up load cost: The payment a resource requires to bring its unit to its minimum charging level from an offline or injecting state

New Parameters Definitions (con't.)

- Track 2 of the Market Design (Energy Storage Optimization) will also consider the following parameters :
 - Beginning State of Charge: Level of energy the resource desires at the beginning of the interval with an associated cost for deviations
 - Ending State of Charge: Level of energy the resource desires by the end of the interval with an associated cost for deviations
 - Through-put: How much energy the resource is able to inject into the grid on a 24-hour period

Feedback Received

Stakeholders have raised interest in the following items:

- Allow for a continuous bid from Max. Load to UOL
- Roundtrip efficiency should be considered both when charging and discharging
- Energy level (SoC) management should be optional
- Allow resources to leverage price variations across 5-minute intervals
- Consider a variable to capture total energy injected (Through-put)
- Items that the NYISO proposes not to pursue as part of this effort:
 - The number of cycles" should be optional, or controlled by the resource owner
 - ESRs that are in front of a customer meter, and not serving Load at a facility will not be part of the NYISO's Pilot Project Program
 - Energy Storage Resources that are behind-the-meter may be part of a Pilot Project aggregation

ii. Number of cycles per interval: The maximum number of times that the Storage resource can go through full Upper-Lower charge limits cycles in an interval (Not part of this proposal)

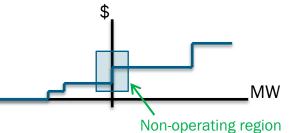
©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Phase 1 Integration and Scheduling logic

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Eligibility Criteria for Energy Storage Resources

- The initial phase of this program is targeted to enhance the integration of resources with a minimum output of 1 MW.
 - The NYISO will allow bids in 0.1 MW increments above 1 MW, just as for other resources.
- The NYISO proposes a minimum storage capability of 1 MWh (Upper Charge Limit Lower Charge Limit).
 - ESRs with a minimum energy storage capability of less than 1 MWh will be considered in the DER Roadmap effort.



Energy Storage Integration– Constrained Energy Level Scheduling

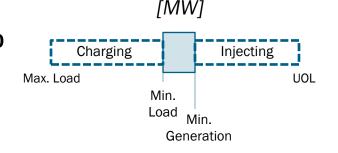
- The Energy Storage Integration project will develop a scheduling logic for ESRs in real-time based on their incremental energy bids, and additional operational characteristics.
 - This approach is consistent with the current optimization logic for generators, which minimizes total production cost, while honoring transmission system and resources' limitations.
- As part of this phase, ESRs Energy level will be considered as an additional constraint when scheduling the resource, rather than a variable. There will be no Energy Level optimization.

Proposed considerations for commitment decisions

- If the resource has a non-operating region and/or a transition time, then injecting, withdrawing, and idle will be different operating states.
 - Changes in operating state will be made in RTC.
 - The resource must be able to maintain each state for at least 15 minutes.
- If the resource does not have a non-operating region, or a transition time, RTD will have the capability to dispatch the resource through the full operating range (*i.e.* injecting/withdrawing).
- To the extent that commitment parameters are associated with scheduling the resource, the state of the resource will have to be assigned by RTC.

Proposed considerations for commitment decisions

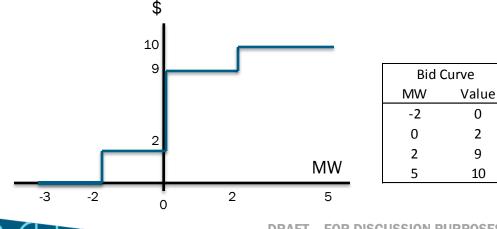
- Commitment parameters include:
 - Transition Time
 - Min. Load Min. Gen
 - Min. Max. Run Time
 - Min. Max. Charge Time
 - Start-up Costs
 - Start-up Notification Time


Energy level in RT

- The NYISO proposes to allow resources to decide whether they want to provide Energy level telemetry.
 - If the resource provides Energy level signal, then the NYISO will consider the energy level of the resource in real-time, and avoid scheduling it beyond the Upper and Lower Charge Limits.
 - If the resource decides not to provide Energy level signal, then it will be responsible for managing its energy level.

Charging and Discharging rates

- The NYISO intends to apply existing parameters to energy storage resources where possible.
 - The maximum discharging rate is equivalent to UOL.
 - The minimum discharging rate is equivalent to Minimum Generation.
- Two additional bidding parameters will be created to capture the withdrawing capabilities of the resource: Minimum and Maximum Load.



Other considerations

- The NYISO intends to implement a single ramp value for both charging and discharging.
 - Feedback is requested on whether to allow different ramp values for charging and discharging states.

- The examples will use the following format and bid curve
- Ramp constraints and start-up costs will not be considered (Lithium-ion battery, for example)
 Parameters Units Value UOL MW 5
- Resources will be providing energy only

Parameters	Units	Value	
UOL	MW	5	
Max. Load	MW	-3	
Transition Time	Min	5	
Min. Load	MW	-1	
Min. Generation	MW	1	
Withdrawing losses	%	4%	
Injecting losses	%	4%	Values will
Energy Level (SoC)	-	Yes	change
Upper Charge Limit	MWh	5	through the
Lower Charge Limit	MWh	0.5	examples.
Charge Rate	MW	-3	crampics.
Discharge Rate	MW	5	
Min. Charge Time	Min	0	
Max. Charge Time	Min	300	
Min. Run Time	Min	0	
Max. Run Time	Min	500	

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

20

Parameters	Units	Value
UOL	MW	5
Max. Load	MW	-3
Transition Time	Min	5
Min. Load	MW	-1
Min. Generation	MW	1
Withdrawing losses	%	4%
Injecting losses	%	4%
Energy Level (SoC)	-	Yes
Upper Charge Limit	MWh	5
Lower Charge Limit	MWh	0.5
Charge Rate	MW	-3
Discharge Rate	MW	5
Min. Charge Time	Min	0
Max. Charge Time	Min	240
Min. Run Time	Min	0
Max. Run Time	Min	500

Bid Curve				
MW Value				
-2	0			
0	2			
2	9			
5	10			

- Since the resource has a non-operating region, it will be committed by RTC. Therefore, the minimum state duration will be 15 minutes (1 RTC interval). It will be committed by RTC.
- The resource is providing an Energy level signal.
- Assume Min. Load and Min. Generation costs are low enough for the resource to be scheduled.

	RTC	LBMP	Optimal Dispatch	Actual Dispatch	Total withdrawing	Total injecting	Energy level	
		[USD]	[MW]	[MW]	[MWh]	[MWh]	[MWh]	
	t-1	-	-	-	-	-	1.50	
ĺ	0:00	-1.00	-3.0	-3.0	-0.7	0.0	2.22	
	0:15	3.00	0.0	0.0	0.0	0.0	2.22	
	0:30	4.00	0.0	0.0	0.0	0.0	2.22	
	0:45	7.00	0.0	0.0	0.0	0.0	2.22	
	1:00	10.00	5.0	2.1	0.0	0.5	1.72	
	1:15	12.00	5.0	5.0	0.0	1.2	0.52	ĺ
U	1:30	9.00	2.0	0.0	0.0	0.0	0.52	V
	1:45	8.00	0.0	0.0	0.0	0.0	0.52	
	2:00	7.00	0.0	0.0	0.0	0.0	0.52	
	2:15	6.00	0.0	0.0	0.0	0.0	0.52	

Because the resource is providing an Energy level signal, RTC will honor the Upper and Lower charge limits.

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Parameters	Units	Value
UOL	MW	5
Max. Load	MW	-3
Transition Time	Min	0
Min. Load	MW	0
Min. Generation	MW	0
Withdrawing losses	%	4%
Injecting losses	%	4%
Energy Level (SoC)	-	No
Upper Charge Limit	MWh	5
Lower Charge Limit	MWh	0.5
Charge Rate	MW	-3
Discharge Rate	MW	5
Min. Charge Time	Min	0
Max. Charge Time	Min	-
Min. Run Time	Min	0
Max. Run Time	Min	-

Bid Curve				
MW Value				
-2	0			
0	2			
2	9			
5	10			

- Since the resource does not have a non-operating region, it can be fully dispatched by RTD (injecting/withdrawing).
- The resource does not provide an Energy level signal. Therefore, the Upper and Lower Charge Limits will not be honored by RTD.

RTC	RTD	LBMP	Optimal Dispatch	Actual Dispatch	Total withdrawing	Total injecting	Energy level
		[USD]	[MW]	[MW]	[MWh]	[MWh]	[MWh]
	t-1	-	-	-	-	-	1.50
	0:00	-1.00	-3.0	-3.0	-0.2	0.0	1.74
1	0:05	-1.00	-3.0	-3.0	-0.2	0.0	1.98
	0:10	2.00	0.0	0.0	0.0	0.0	1.98
	0:15	3.00	0.0	0.0	0.0	0.0	1.98
2	0:20	4.00	0.0	0.0	0.0	0.0	1.98
	0:25	7.00	0.0	0.0	0.0	0.0	1.98
	0:30	10.00	5.0	5.0	0.0	0.4	1.58
3	0:35	12.00	5.0	5.0	0.0	0.4	1.18
	0:45	11.00	5.0	5.0	0.0	0.4	0.78
	0:50	9.00	2.0	2.0	0.0	0.2	0.62
4	0:55	7.00	0.0	0.0	0.0	0.0	0.62
	1:00	5.00	0.0	0.0	0.0	0.0	0.62

The resource is fully dispatchable and can leverage price variations across 5-minute intervals.

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Parameters	Units	Value
UOL	MW	5
Max. Load	MW	-3
Transition Time	Min	0
Min. Load	MW	0
Min. Generation	MW	0
Withdrawing losses	%	4%
Injecting losses	%	4%
Energy Level (SoC)	-	Yes
Upper Charge Limit	MWh	5
Lower Charge Limit	MWh	0.5
Charge Rate	MW	-3
Discharge Rate	MW	5
Min. Charge Time	Min	0
Max. Charge Time	Min	-
Min. Run Time	Min	0
Max. Run Time	Min	-

Bid Curve				
MW Value				
-2	0			
0	2			
2	9			
5	10			

 The resource is providing an Energy level signal, and it is RTD-dispatchable for injecting and withdrawing.

RTC	RTD	LBMP	Optimal Dispatch	Actual Dispatch	Total withdrawing	Total injecting	Energy level
		[USD]	[MW]	[MW]	[MWh]	[MWh]	[MWh]
	t-1	-	-	-	-	-	0.50
	0:00	-1.00	-3.0	-3.0	-0.2	0.0	0.74
1	0:05	-1.00	-3.0	-3.0	-0.2	0.0	0.98
	0:10	2.00	0.0	0.0	0.0	0.0	0.98
	0:15	3.00	0.0	0.0	0.0	0.0	0.98
2	0:20	4.00	0.0	0.0	0.0	0.0	0.98
	0:25	7.00	0.0	0.0	0.0	0.0	0.98
	0:30	10.00	5.0	0.0	0.0	0.0	0.98
3	0:35	12.00	5.0	5.0	0.0	0.4	0.58
	0:45	11.00	5.0	1.0	0.0	0.1	0.50
	0:50	9.00	2.0	0.0	0.0	0.0	0.50
4	0:55	7.00	0.0	0.0	0.0	0.0	0.50
	1:00	5.00	0.0	0.0	0.0	0.0	0.50

The resource is providing an Energy level signal, and it reaches the lower charge limit during the hour considered.

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Parameters	Units	Value
UOL	MW	5
Max. Load	MW	-3
Transition Time	Min	5
Min. Load	MW	-1
Min. Generation	MW	1
Withdrawing losses	%	4%
Injecting losses	%	4%
Energy Level (SoC)	-	Yes
Upper Charge Limit	MWh	5
Lower Charge Limit	MWh	0.5
Charge Rate	MW	-3
Discharge Rate	MW	5
Min. Charge Time	Min	30
Max. Charge Time	Min	240
Min. Run Time	Min	30
Max. Run Time	Min	500

Bid Curve					
MW	Value				
-2	0 2 9				
0					
2					
5	10				

- The resource is RTC-committed and has Minimum and Maximum Charge Times.
- Assume Min. Load and Min. Generation costs are low enough for the resource to be scheduled if the incremental bid is selected.

RTC	LBMP	Optimal Dispatch	Actual Dispatch	Total withdrawing	Total injecting	Energy level
	[USD]	[MW]	[MW]	[MWh]	[MWh]	[MWh]
t-1	_	-	-	-	-	2.50
0:00	-1.00	-3.0	0.0	0.0	0.0	2.50
0:15	3.00	0.0	0.0	0.0	0.0	2.50
0:30	4.00	0.0	0.0	0.0	0.0	2.50
0:45	7.00	0.0	0.0	0.0	0.0	2.50
1:00	10.00	5.0	3.3	0.0	0.8	1.71
1:15	12.00	5.0	5.0	0.0	1.2	0.51
1:30	9.00	2.0	0.0	0.0	0.0	0.51
1:45	8.00	0.0	0.0	0.0	0.0	0.51
2:00	7.00	0.0	0.0	0.0	0.0	0.51
2:15	6.00	0.0	0.0	0.0	0.0	0.51

Based on the projected LBMPs the resource is not economically selected for a period long enough to honor its minimum charge time.
Therefore, the resource is not scheduled to withdraw energy from the grid.

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED

Next Steps

- The NYISO intends to discuss the DA scheduling and Settlements logic with Stakeholders in August 24, 2017.
- The NYISO will continue to explore operational enhancements that may improve the integration of storage resources.

The NYISO seeks feedback on the materials presented today

 Email additional feedback to: Daniel F. Noriega dnoriega@nyiso.com

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Questions? We are here to help. Let us know if we can add anything.

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com